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A CLASS OF MONOTONIC SHOCK-CAPTURING DIFFERENCE SCHEMES

0. Introduction

A broad class of gas-dynamic problems can be treated within the

framework of ideal gas theory, i.e., assuming the gas is inviscid and

thermally nonconductive. The differential equations of gas dynamics

follow from the laws of conservation of mass, momentum, and energy

in integral form assuming continuous differentiability of the fluid

variables, and constitute a system of quasi-linear hyperbolic equations.

It is well known that in general these may posess discontinuous solutions

even when smooth initial data are prescribed 1. Physically, the presence

of discontinuities in the solution typically signals the appearance of

a shock wave. There are two possibilities for correctly describing

discontinuous flows within the framework of ideal gas theory. The

first consists of breaking up all the regions in the problem into

subregions of smooth flow, which are described by the differential

equations of gas dynamics, while the discontinuities (boundaries of the

subregions), are described by conservation conditions. It is importan

to distinguish weak discontinuities (discontinuities in derivatives of

the fluid variables), tangential discontinuties, and finally, strong

discontinuities (shock waves). The second approach consists in ptilizing

the conservation conditions in integral form, which allows discontinuous

solutions. For historical reasons (the differential equations were

derived earlier), these are referred to as "generalized," iu contrast

to the continuous classical equations. We note that consideratiou of

generalized solutions extends the class of possible solutions, and It

is therefore necessary to make use of additional considerations in order

to determine the correct solution. For example the requirement that

entropy not decrease at a discontinuity pe.-its us to exclude

Manuscript submitted May 12, 1981.
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rarefaction shocks in the flow of a perfect gas (from a formal point

of view such a discontinuity is unstable).

In numerical modelling of gas motions in the presence of shock waves

both of the above approaches are possible. In the former, the physical

jump conditions on the discontinuities dividing the regions of continuous

flow are used both in order to obtain the conditions connecting the fluid

variables on the two sides of the discontinuity and to determine the

motion of the computational mesh points following the discontinuity.

Changes in the topology of the lines of discontinuity can be followed

either using a moving curvilinear mesh or by means of an algorithm based

on a fixed mesh. The first method is most completely worked out in the

paper by S. K. Godunov et al.2 while the second has been developed by

Moretti et al. 
3 ,4

The shortcoming of both approaches is the inhomogeneity of the

resulting difference schemes and consequent complicated structurxe of ths!

numerical algorithm. Both approaches, as a rule, demand an a priorl know-

ledge of the flow pattern during the calculation.

When it is impossible to know in advance the flow patternor when

it is changing qualitatively with time, it is more convenient to make i~b

of "shock capturing'" difference schemes, amounting to difference approxi-

mations to the integral form of the conservation laws for ever- computa-

tional cell. The form of the difference equations does not depend on

the character of the flow or the position of the possible shocks, and

therefore such schemes are homogeneous.
1'5  [Apparently "homogeneous"

means universal, i.e., not problem-dependent.--DLB] In this approach

shocks appear as regions of abrupt variation of the fluid quantities.
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Shock-capturing schemes can also be based on the differential equations.

For this purpose small corrections are introduced in the equations,

typically of nonlinear form, analogous to physical viscosity. The

equations assume parabolic form and permit a smooth solution which

tends to the solution of the original system as the "artificial" vis-

cosity vanishes. However, difference analogs of the conservation laws

are satisfied. in this technique, generally speaking, only approximately.

In difference schemes based on the integral form, the mass, momentum,

and energy conservation laws are sat!-'ed for every computational cell

to roundoff. Such schemes are describable in terms of fluxes across

boundaries of the computational cells, and so the conservation laws

for each computational region are algebraic consequences of the con-

servation laws for cells, i.e., the schemes are conservative.
5

We note that the first approach, as a rule, distinguishes only

simple shocks, while the other types of discontinuity are calculated

as in the shock-capturing method. A difference scheme employed for

solving practical problems is required to be accurate, that is, it

must be able to describe flows on comparatively coarse meashes; it must

be economical; and it should be simple to employ. The accuracy of the

scheme for calculating smooth flows is determined by the order of the

approximation. In the neighborhood of a shock, the change in the fluid

variables is comparable with their magnitude, so that the concept of

the order of the approximation becomes meaningless. It is well known

that schemes of the first type lead to smearing of the shock because

of the strong numerical viscosity. Schemes of second and higher order

give rise to significantly less smearing of shock runs, but are typically

3



nonmonotonic. One of the principle reasons for the appearance of un-

physical oscillations in the neighborhood of a shock is the nonvanishing

dispersion of the difference scheme, which leads to misrepresentations

of the form and speed of propagation of physical disturbances, especially

at short wavelengths. Nonmonotonicity may also be produced by the non-
6

linearity inherent in real problems.

Artificial viscosity is introduced to suppress unphysical oscil-

lations. Most methods for achieving this, however, do not yield a

monotonic scheme, and consequently make the localization of shocks worse

and strongly smear large gradients. This problem becomes especially

severe in calculations involving strongly shocked flow arising from

nonsteady interaction of shock waves with one another and with obstacles.7

Recently a number of methods using nonlinear limiters of various sorts

to filter unphysical oscillations have appeared.7- 14 Many of these are

highly effective, so that the assertion that "good schemes of first and

of higher order smear shock fronts in practically the same degree" 2

cannot be accepted as correct.

It is convenient to choose an actual difference scheme in several

stages. First the dispersion and dissipation properties are studied

in the linear approximation using the method of differential approxi-

mations or harmonic analysis for the simplest transport equations. It

is essential to test the schemes selected through linear analysis on

simple one-dimensional problems having an exact solution. The final

stage of development of any difference scheme must be its verification

on model two-dimensional problems.
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In the present paper a nonlinear conservative smoothing procedure

is proposed in order to achieve monotonicity in explicit schemes of

higher order. Although this smoothing procedure is applicable to

arbitrary schemes, the underlying transport algorithm is taken here to
15

be second-order MacCormack differencing. The results of the linear

analysis of the dispersion and dissipation properties of this and a

number of other widely used schemes are presented in Ref. 16. Below,

the second stage in the choice of an optimal scheme is considered in

detail. This is conveniently divided into two parts. The first is an

investigation of the solution of the linear advection equation, which

facilitates an understanding of the nonlinear properties of the scheme.

The second part is a calculation of the flow resulting from theevolution

of a one-dimensional gas dynamic shock. In conclusion, as an illus-

tration of the possibilities of the proposed numerical method, a

three-dimensional problem involving the interaction of a plane shock

wave with an obstacle is discussed.



1. Construction of second order monotonic difference schemes

An effective device for constructing monotonic difference schemes

having second-order accuracy for smooth flows was presented by Boris

and Book.1 1'1 2 It consists of two stages. In the first a large numeri-

cal diffusion is introduced into the solution, which guarantees the

monotonicity of the scheme. In the second stage this diffusion is

canceled wherever doing so does not introduce new unphysical extrema or

accentuate existing ones. By means of this approach a family

of FCT (Flux-Corrected Transport) methods was conitructed.

We consider the simple example of the Cauchy problem for the

linear advection equation

af + f 0(1.1)
at

where

f(Ox) = fo(x).

The exact solution has the form f(t,x) = f0 (x - vt). Let fn be the

value of the function at the ith grid point of a uniform mesh on the nth

time level; let i + T be the operator which propagates the solution

from the nth to the (n+l)st level. The form of T depends on the

particular difference scheme used. We define a diffusion operator D by

Dfi co i+l/2 - Qi-1/2 Q6fi+1 / 2 - -1/2(1.2)

where

1+1/2 i+l -fi"
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Then the first (diffusion) stage can be represented in'the form

ti  C +T D)f .

Now we cancel the diffusion in such a way that in the resulting solu-
tion no new extrema in comparison with f appear, and those already

present are not amplified. For this purpose in the antidiffusion

operator A, given by

Afc C
Afl = - i+i2 - il )

we limit the fluxes 'i+i/2 Q6f±+1/2 according to the formula

c S max (0, min(s j i-l/2' 67.+I 2I''Pi+ I / 2 J - / ' I i l/ 1

S 6T iI+3/2), (1.3)

where S ' sign yi+l/2-

The transition from the nth to the (n+l)st time level has the form

f n+l .(+A)T. = (1+A)(l+T+D)f. (1.4)

This technique--the explicit cancellation of the diffusion--leads to

retention of some of the diffusion in smooth regions [i.e., where the

limiter (1.3) does not operate and A q - D], even when T 0. Conse-

quently Boris and Book proposed two other algorithms:

7



"1phoenical"

n+1
f - [(I+A)(l+T) + D1fn (1.5)

and

implicit

fn+l (1+A)-(1+T+ID)f (1.6)

which permit complete cancellation of the diffusion when T E 0 in

smooth regions. We note that using the algorithm (1.4)-(1.6) leads to

substantial improvement in the results in comparison with widely used

schemes.

In the SHASTA11 scheme the coefficient Q 1/8. Subsequently

Boris and Book investigated in detail the influence of the value of

magnitude of Q on the dissipative properties of this scheme and deter-

mined the optimum dependeuce of Q on the Courant number. 1 2  However,

practically speaking, this optimization is meaningful only for a linear

equation with constant coefficients. For the equations of gas-dynamics,

as calculations reveal, good results are obtained for Q between

1/10 and 1/6.

One can point out three factors responsible for the success of the

method of Boris and Book. First, the diffusion stage, as shown by

linear analysis, substantially improves the dispersion properties of

the scheme. Second, the diffusion is introduced in a conservative

manner, and, finally, it is done so as to permit excellent localization

in the neighborhood of the shocks. Evidently it is precisely these

last two properties which are most important. In Ref. 13 it whs.
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proposed to interpret the method of Boris and Book as a nonlinear con-

servative smoothing procedure and to introduce diffusion at the (n+1)st

time level according to

fnl . (l+A)(i+D)(l+T)fn (1.7)
i

Or

fn+l (IAa (+)f (1.8)

This procedure fails to improve the dispersive properties .and falls

somewhat short in quality of the results of the algorithms (1.4)-(1.6).

However, in contrast to the original method of Boris and Book, which is

essentially one-dimensional in character and which in two-

dimensional calculations can only be applied via the method of coordi-

nate timestep-splitting of the the difference equations, smoothing in

the form of Eqs. (1.7)-(1.8) is easily incorporated in essentially

two-dimensional schemes. For this purpose, after each timestep successive

smoothing operations are carried out with respect to each of the coordi-

nates. Such smoothing has turned out to be effective in solving a
17-21

whole series of problems.

In the present paper a simpler smoothing procedure is proposed,

having a local character while retaining the conservative property of

the difference scheme. A constant diffusion is introduced only in

regions which are not monotonic, i.e., where the solution has a numerical

ripple. As a result of this, just as in the method of Boris and Book,

there is a certain amount of smearing of physical extrema, but for the

most part only oscillations produced by the numerical scheme are

9



removed. The conservative property is assured by introducing the

diffusion in the form of fluxes across the cell boundaries. Using

the notation introduced above, we can write the smoothing at the nth

time level as

+1 (1+T)f n9 Dn~ 19fi  f- i

and on the (n+l)st time level in the form

f f+l (l+D*)(l+T)f "  (1.10)
i I

In these expressions

D f1 i+i/2 -i-l/'

where

6f <f 0 or6ff

i (% i+1/2' i+1/2  i+3/2 Cf0+o/2 6f-1/2  
1

10 otherwise.

In order to code this prescription it is convenient to search the entire

array fi, recording the boundaries across which the flux is nonvanishing,

and then in a second pass calculate the nonzero fluxes.

This procedure for introducing artificial viscosity runs substan-

tially faster than the method of Boris and Book, while yielding com-

parable results. Note that, in contrast with the algorithms (1.4)-(1.7),

smoothing according to the prescription (l 8)-(i.10) in regions where

the fluid quantities vary monotonically in general leaves the solution

unchanged.

10



2. Solution of the linear transport equation

In this and the following section the proposed numerical method

is compared with a number of different schemes, using a one dimensional

model problem having an exact solution. The schemes of S. T. Godunov
2 2

MacCormack 1 5, V. V. Eremin and Yu. M. Lipnitskii 2 3 , of first, second

and third order, respectively, are considered and also the non-linear

scheme of Boris and Book, SHASTX 1 2 , embodying the algorithm (1.5). These

schemes are widely employed and have performed well in practice; therefore

the present analysis permits one to carry out an objective evaluation of

the proposed method.

Let us approximate equation (1.1) on a uniform mesh with Ax - 1.

The computational mesh contains a total of 100 cells. On the boundaries

periodicity conditions are imposed. The initial conditions are given in

the form

f(o,x) 0cp.5, 1x L

where L = 20 and

cp(x) =2 (2.1)

or

cp(x) 0.5 + 0.075x. (2.2)

In Fig., 1 are shown the results of the caleulations after 800

timesteps with Courant number v= 0.2, i.e. for a total running

time i Vt/L, after which the initial square wave (2.1) of width 20

cells has been carried across 160 cells. The curves (al), (a2), (a3),

correspond to the schemes of Godunov (which coincides in the linear

case with one-sided differencing), MacCormack (equivalent to the scheme

of Lax and Wendroff), and Eremin-Lipnitskii; (b). to the SHASTX scheme; (c),



2

(d), (e) correspond to the monotonic MacCormack scheme with smoothing

according to algorithms (1.7), (1.10), and (1.9). The best results

were obtained with SHASTX. The SHASTA1 1 algorithm and the monotonic

MacCormack scheme with the smoothing (1.9) were very slightly inferior

to this. The smoothing procedures (1.7) and (1.10) give worse results,

which are comparable, however, with the results obtained from the third-

order scheme. The first-order and second-order schemes yielded

unsatisfactory approximations to the solution.

Since the solutions of the linear advection equation using the

algorithms (1.7) and (1.10) were inferior, however slightly, to the algorithm

(1.9), in the remainder of this section we will present the results of

calculations carried out using the latter. We must point out, however,

that these other algorithms will be analyzed below, Inasmuch as they

possess definite advantages in solving real gas-dynamic problems. The

-results of the present section are applicable in problems where linear

equations are solved, for example, in certain meteorological problems.

Figure 2 illustrates the "flexibility" of the various schemes in the

sense of Ref. 2, i.e., the capability of solving problems in which the

Courant number varies greatly over the computational region. Here

profiles are shown at - 3, obtained for Courant number v- 0.6

(curve 1) and v= 0.2 (curve 2) using first-order (a), second-order (b),

third-order (c) and the monotonic MacCormack (d) schemes. The

superiority of the latter is indubitable. The calculation was not

carried out with SHASTX, which requires that condition v < 0.5 be

satisfied11 .

As we remarked in Section i, the smoothing which removes numerical

12



oscillations smears out physical extrema. Consequently, the test

problem using initial conditions in the form of a triangular profile

(2.2) constitutes a stringent test of a scheme. Figure 3 shows

profiles at time t 1 (curves 1) and t 20 (curves 2) for the same

schemes as in Fig. 2, if v- 0.2. The first-order scheme practically

"forgets" the initial conditions; the second-order scheme qualitatively

changes the shape of the pulse as time elapses, while the thid-order

scheme preserves the "height" of the distrubance well. The monotonic

MacCormack scheme is only negligibly inferior to SHASTX (the dashed lines

in Fig. 3d).

13



3. The evolution of a gas-dynamic shock

The problem of the evolution of a gas dynamic shock involves all the

characteristic features of one-dimerwional ideal gas flow: creation and

propagation of a shock wave, contact discontinuity and rarefaction fan.

By comparing the results of the calculation with the analytic solution.

we can check both the accuracy with which the characteristic flow regions

are transported and the speed with which they develop. A comparison

of the various schemes mentioned above will be presented. based on this

problem.

As was stated earlier, unphysicaloscillations in the neighborhood of

shocks and steep gradients appear because of. the nonvanishing dispersion

associated with a difference scheme, the nonlinearity of the gas-dynamic
~24
equations, and also for several other reasons . Besides this, it is

possible that the various nonlinear smoothing operators may interact

with one another nonselfconsistently.

The system of equations has the following form:
x 2dt 2 t 2  2

f x +f PU dt = 0,fX tl I i

x2 f ( 2 dx + t2 + P)t2 
0.

1 1

(e~ +2 ptl r dt 0.

f e dx + ft +p~

Here e p/(y-l) + Pu /2, where y is the adiabatic index. We consider

the evolution of a shock with initial pressure ratio p2/pl - 2 and

density ratio p 2/P1 1, and y - 1.4. In Fig. 4 are shown density

14



profiles obtained using the Godunov (a), Eremin-Lipnitskii (b),

MacCormack (c) and SHASTX (d) schemes. The exact solution is

indicated by the heavy continuous line and the numerical results

up to t = 25 by a fine continuous line. The first-order scheme, as

one might expect, badly smears the shock front and contact discontinuity

and represents the rarefaction fan poorly. The Eremin-Lipnitskii and

MacCormack schemes are nonmonotonic and yield oscillations in the

neighborhood of the shocks. SHASTX, which represents the shock front

very well, gives rise to smallundershoots in the density in the neighborhood

of the contact discontinuity and rarefaction fan. For this case the

SHASTA scheme, as described by Boris and Book, gives practically the

same results as does SHASTX. All of the schemes accurately represent

the pressure profile between the shock wave and the rarefactiua fan.

In Fig. 5 are shown results of calculations using the monotonic

MacCormack scheme with various forms of smoothing. Fig. 5a corresponds

to algorithm (1.7). One shortcoming of this approach lies in the presence

of undershoots in density in the neighborhood of the shocks and rarefaction

fans. Very similar results are obtained when one applies the smoothing

(1.9) to all of the equations in system (3.1) (Fig. 5b).

In the present work it is proposed to carry out self-consistent

smoothing of the density, momentum, and energy in regions where

nonmonotonicity in the density profile exists, using the procedures

(1.9) and (1.10) described above. The justification for this lies in

the fact that every stable one-dimensional shock has a density

discontinuity. In particular, this self-consistent smoothing

introduces no changes in the velocity at a contact discontinuity, aince

15



the density and mdmentum are smoothed in a "related" manner. It also

soumwehat reduces the expenditure of machine time, since in order to

determine nonmonctoniclty, one array of numbers instead of three is

searched [Cf.(1.ll)'. We note that this type of smoothing cannot be

implimented using algorithms (1.4) - (1.8) because of their two-stage

character.

The density profiles obtained using self-consistent smoothing at

the nth and (n+l) st levels are shown in Figs. 5c and 3d. These

results are clearly superior to all those shown ?reviously. It is

interesting to observe that the difference in the results obtained by

smoothing according to the algorithms (1.9) and 1.10) is much smaller

than in the case of linear advection (Fig. 1). This is indicative of

the decisive role played by nonlinear effects in numerical solutions

of the gas-dynamic equations.

We pause to draw attention to some peculiarities in the solutions

we have found. Most of the calculations were run with At - 0.5.

SHASTA, SHASTX, and the MacCormack scheme with self-consistent

smoothing, however, yielded a highly oscillatory solution. The

oscillations are a consequence of the nonselfcousistency of the smoothing

and the interaction between the resulting errors in the various fluid

quantities. A separate paper will be. devoted to a detailed analysis

of the nonlinear properties of the different schemes, the nonmonotonicJty

resulting from various causes, and ways of contending with the unphysical

oscillations that result. We therefore will not go inot tle reasons for

the appearance of computational ripples in detail, but content ourselves

with remarking that they vanish as the time step is reduced. The

16



solutions shown in Fig. 4c and 5b were obtained with a time step

t - 0.25.

We now compare the respective running times. Taking as the unit of

time that required for a single step according to the 1acCormack scheme,

the corresponding running times for the other schemes are as follows:

monotonic MacCormack with self consistent smoothing, 1.4; with

nonselfconsistent smoothing according to algorithm (1.9), 1.5- using

algorithm (1.7), 2; for the Godunov scheme 2 - 2.5, depending on how

the "large" quantities are calculated; for SHASTA and SHA;A 'VX, 3; and

for the Eremin-Lipnitskii scheme, 2.5.

We next consider an example in which a strong shock vave is formed.

The initial parameters are taken to be the same as in the oapet of Boris

and Book l(p2/pl - 480, p2 1Pl = 8, 'y 5/3, At: = 0.02). 1he Eremin-

Lipnitskii and MacCormack schemes in the absence of 8i) a6oit:lnal

artificial viscosity do not permit: calcmulation, o, su(. . ,o

and the monotonic MacCormack scheme with smoothing accotdcing to

algorithm (1.7) give approximateiy the ssme results as SHASUX. We

therefore make further comparisons of the resu]ts obtaine', using the

method of Godunov, SHASTX, and -mcnotoni. MacCorruack s1emvc wit)h st i.

consistent smoothing given by (1.9). In Figs. 6 and 7 a'c shown (ent

and pressure profiles obtaine ng then scheie; at- t.ij" f - 2 (sr-.hi.'

lines and t - 4 (fine continuous .ines), A vex:tca) dash l..dotted li.i

is used to show the initial position of the shockt. The vjrtuec: anI

shortcomings of the nuierical methods under Investigation are

clearly shown i, Table 1, in which the values of densit, and relative

errors at time t - 4 are shown. In the left column of the table is shoran

17



the nmber of computational cells. The Codunov scheme strongly

smears the shock front and contact discontinuity and approximates the

exact solution poorly in the region of the rarefaction fan. SHASTX

is somewhat better than the monotonic MacCormack scheme in representing

the shock wave and rarefaction fan, but somewhat inferior to it in

representing the contact discontinuity. In addition, SHASTX gives

incorrect values in the neithborhood of the initial shock.

The monotonic MacCormack scheme and SEASTX have good dynamical

properties. They permit relatively fast determination of the true flow

pattern (Cf. the Godunov scheme). This last property is especially Important

in solving nonstationary problems.

18



4. Calculation of three dimensional interaction of a shock wave with

an obstacle.

The possibilities of the proposed method are illustrated below for

the example of reflection of a plane shock wave from a obstacle of

finite width. The initial stage of the interaction precess is

investigated, in which the reflected shock wave begins to form and the

pressure loading on the object is a maximum. We remark that this problem

is of interest in its own right, inasmuch as experimental determination of

nonstationary three-dimensional flows encounters serious difficulties.

The problem is solved in Cartesian coordinates. The mesh is

uniform. Timestep splitting was employed in solving the difference

equations25'26 which permitted a substantial saving in running time.

The conservation laws in Eulerian coordinates have the form"f pIt2 f t
2  2 pV.n ds dt O,

v t Il s

Pf dv + (PV + P) n ds dt = 0,

v t t- s

2 ft 2 f V sd

fe I dv + (e + p)V ndsdr0

v 1

We denote by L (At) the operator which performs a step in the direction a:
a

n + 1/3

f n /3-L (At) f a
S-L A ijk.

L is defined in the following manner:
1

[1

lj



n at n K -Fi)

T±k f j - - (En J+n, Ksijk),
lIjk jkijkh Ah -Fi+qjrJ

fn+1/3 1 Efn +At

ijk i ijk + jk F -- 7 i-qJ-rk-s ,

where

put Iu
f = pu F , pu u + T" p,

z z.

q Xa r - y, s

The smoothing is carried out according to the algorithm (1.9). The

transverse momentum components were smoothed indepeudently.

The complete transport operAtor will look as follows:

L(2At)-- L (At) Lx (At) Lz (At) Lx (At) Ly (U).

Written thus, even if the split operators L (At) do not commute, the

difference scheme has second-order accuracy over a double 
timestep27

The stability condition for the split equations is

At .min(At ) - z

a
w h e r eA l - r. m n h

rink u +a

and a is the speed of sound. This condition turns ot bo be

considerably less stringent than for the unsplit operators:

at min ~A
IVI + afT
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Since At ( x is the direction of propagation of the shock wave)
X

is usually much smaller than Aty and Atz , it makes sense to carry out

the calculation in the y and z directions with a double timestep. Thus

using

L (2At)- L a(At) L a(At), a = y,z,

we finally obtain

u+2mAt
f ij L y(At)[Lx (At) L z(2At) L (At) Ly (2At)] m-

ijk X Z Xy

n
L (At)L (2At)L (At)L (At)f

x z x Y ijk

Use of this algorithm instead of

n+2mAt nm f
f L = (2At)f ijkijk

permits reduction of the computational volume by a factor of 1.5.

In the test the computationalmesh consisted of 20 x 20 X 15 cells.

Calculation of a single case up to t 1.2 - 1.5 required about 2 hours of

time on the M4030. Here t = tV amp/h, where V a is the speed of theamp amp

reflected shock wave which arose as a result of the interaction of the

incident wave with the square object,. and h is the step height.

A typical flow pattern is &hown in Fig. 8. At = 1.1 the isobars

are shown in (a) with separation Ap = 10.0, and the lines of constant

Mqch number (b) at intervals AM = 0.2. The Mach number of the incident

shock wave M - 5.0 and the ratio of width to height of the step wasx

1/h = 5.2. The adiabatic index was y - 1.4 and the pressure in the

21



undisturbed gas was PO = 1.0. It is clear that the method permits

excellent resolution of the shock wave and the flow in the neighborhood

of the corner points.

In Fig. 9 are shown the isobars in two cross sections x - const,

located equidistantly and parallel to the boundary of the step at a

distance 0.3 h. The ratio 9/h = 2.0 in (a), 3.6 in (b), and 5.2 in (c).

In Fig. 9a are shown the isobars for the plane case (1/h - a).

Figure 10 illustrates the influence of the ratio 1/h on the beoding

of the shock wave in the xy plane. Curves 1,2,3-porrespond respectively

to L/h = 2/0, 3.6, and 5.2 (the bending is related to the bending for the

plane case).

The authors thank Yu. P. Golovachev for his unstInting ttentivi ' o

this work and useful discussions, and also V.M. Goloviznin, G.L. Stene.hikov,

and A.P. Favorskii for valuable suggestions.
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